Skip to main content

Visualizing the Dynamics of Inactive X Chromosomes in Living Cells Using Antibody-Based Fluorescent Probes

  • Protocol
  • First Online:
X-Chromosome Inactivation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1861))

Abstract

The inactive X chromosome (Xi) harbors characteristic epigenetic features, including the enrichment of histone H3 lysine 27 trimethylation (H3K27me3) and H4 lysine 20 monomethylation (H4K20me1) as well as a lack of histone acetylation. Recently, these modifications have been visualized not only in fixed specimen, but also in living cells via probes derived from modification-specific antibodies. The probes include fluorescently labeled antigen binding fragments (Fabs), which can be loaded into cells, as well as genetically encoded single-chain variable fragments tagged with the green fluorescent protein. We refer to the latter as modification specific intracellular antibodies, or “mintbodies” for short. By using Fabs or mintbodies to target Xi-specific modifications, the dynamics of Xi in living cells can be visualized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ng K, Daigle N, Bancaud A, Ohhata T, Humphreys P, Walker R, Ellenberg J, Wutz A (2011) A system for imaging the regulatory noncoding Xist RNA in living mouse embryonic stem cells. Mol Biol Cell 22:2634–2645

    Article  CAS  Google Scholar 

  2. Perche PY, Vourc'h C, Konecny L, Souchier C, Robert-Nicoud M, Dimitrov S, Khochbin S (2000) Higher concentrations of histone macroH2A in the Barr body are correlated with higher nucleosome density. Curr Biol 10:1531–1534

    Article  CAS  Google Scholar 

  3. Soma A, Sato K, Nakanishi T (2013) Visualization of inactive X chromosome in preimplantation embryos utilizing MacroH2A-EGFP transgenic mouse. Genesis 51:259–267

    Article  CAS  Google Scholar 

  4. Kimura H, Hayashi-Takanaka Y, Stasevich TJ, Sato Y (2015) Visualizing posttranslational and epigenetic modifications of endogenous proteins in vivo. Histochem Cell Biol 144:101–109

    Article  CAS  Google Scholar 

  5. Hayashi-Takanaka Y, Yamagata K, Wakayama T, Stasevich TJ, Kainuma T, Tsurimoto T, Tachibana M, Shinkai Y, Kurumizaka H, Nozaki N, Kimura H (2011) Tracking epigenetic histone modifications in single cells using Fab-based live endogenous modification labeling. Nucleic Acids Res 39:6475–6488

    Article  CAS  Google Scholar 

  6. Sato Y, Mukai M, Ueda J, Muraki M, Stasevich TJ, Horikoshi N, Kujirai T, Kita H, Kimura T, Hira S, Okada Y, Hayashi-Takanaka Y, Obuse C, Kurumizaka H, Kawahara A, Yamagata K, Nozaki N, Kimura H (2013) Genetically encoded system to track histone modification in vivo. Sci Rep 3:2436

    Article  Google Scholar 

  7. Sato Y, Kujirai T, Arai R, Asakawa H, Ohtsuki C, Horikoshi N, Yamagata K, Ueda J, Nagase T, Haraguchi T, Hiraoka Y, Kimura A, Kurumizaka H, Kimura H (2016) A genetically encoded probe for live-cell imaging of H4K20 Monomethylation. J Mol Biol 428:3885–3902

    Article  CAS  Google Scholar 

  8. Kimura H, Yamagata K (2014) Visualization of epigenetic modifications in Preimplantation embryos. Nuclear Reprogramming 348:229–236

    Google Scholar 

  9. Zhou H, Fisher RJ, Papas TS (1994) Optimization of primer sequences for mouse scFv repertoire display library construction. Nucleic Acids Res 22:888–889

    Article  CAS  Google Scholar 

  10. Hayashi-Takanaka Y, Stasevich TJ, Kurumizaka H, Nozaki N, Kimura H (2014) Evaluation of chemical fluorescent dyes as a protein conjugation partner for live cell imaging. PLoS One 9:e106271

    Article  Google Scholar 

  11. Kuniyoshi Y, Maehara K, Iwasaki T, Hayashi M, Semba Y, Fujita M, Sato Y, Kimura H, Harada A, Ohkawa Y (2016) Identification of immunoglobulin gene sequences from a small read number of mRNA-Seq using Hybridomas. PLoS One 11:e0165473

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by JSPS KAKENHI Grants JP15K07157 (to Y.S.) and JP25116005, JP26291071, and JP17H01417 (to H.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Kimura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sato, Y., Stasevich, T.J., Kimura, H. (2018). Visualizing the Dynamics of Inactive X Chromosomes in Living Cells Using Antibody-Based Fluorescent Probes. In: Sado, T. (eds) X-Chromosome Inactivation. Methods in Molecular Biology, vol 1861. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-8766-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8766-5_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-8765-8

  • Online ISBN: 978-1-4939-8766-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics